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The screening approximation of Ferrell and Scalapino @-1 expansion) 
is tested in the exactly soluble zero-dimensional case. The expansion is 
carried to fifth order in n-  1, where, for n = 2, it appears to start diverging. 
For n = 1 divergence sets in at the second-order term. The "self-consistent" 
screening approximation of Bray and Rickayzen converges more rapidly 
but is more difficult to apply in higher dimensionalities. The usefulness of 
the zero-dimensional case for checking the enumeration of the Feynman 
graphs which appear in third and higher order is emphasized. 

KEY W O R D S  : Ginzburg-Landau model ;  entropy funct ion; 1/n expan- 
sion ; screening. 

1. INTRODUCTION 

A recent approach (1-4~ to the theory of the critical behavior  of the d- 

d imensional  G i n z b u r g - L a n d a u  model  with n components  of the order 

parameter  has been based on providing systematic corrections to the Hartree 
approximat ion  by means of an expansion in powers of 1In. This has been 

termed the "screening  app rox ima t ion"  since its graph-theoretic derivation 
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involves graphs in which the bare interaction between fluctuations of the 
order parameter field is screened by the insertion of polarization loops. 
Applications have been made to the cases d = 1 (~ (to second order in 1/n) 
and d = 2, 3 (l'a~ (both to first order in 1/n). Here the expansion in powers of 
1/n refers to the calculation of a thermodynamic function (typically the 
specific heat) per component of the order parameter. For the specific heat per 
component we have C = Co + (1/n)C~ + (1/n2)C2+ ..., where Co follows 
from the Hartree approximation. For d = 1 the expansion may be performed 
either graphically (~ or nongraphically (4~ but for d = 2 or 3 no nongraphical 
methods are known as yet. 

The present work is concerned with a detailed test of the screening 
approximation for the especially simple case d = 0, which corresponds to a 
situation in which there are no spatial fluctuations of the order parameter 
field. The 1/n expansion is carried to fifth order and compared with exact 
results for n = 2 and n = 1. For n = 2 we find that the accuracy of the 
approximation improves through third- and fourth-order corrections and 
then seems to start deteriorating when the fifth-order correction is included. 
For n = 1 divergence sets in as early as the second-order screening correction. 
Also tested here is the "self-consistent" screening approximation of Bray 
and Rickayzen. (6,v~ This was originally introduced (6~ as a graph-theoretic 
interpolation between Hartree and Hartree-Fock approximations in order 
to reproduce correct behavior in both high- and low-temperature regimes. 
It is shown here to correspond to an iteration of the coupled equations for 
the self-energy and three-point vertex using the Hartree approximation as 
starting point. For d = 0 we find that this self-consistent scheme converges 
more rapidly than the simple 1/n expansion. It is, however, more difficult to 
extend to the cases d = 1, 2, and 3. 

In Section 2 we introduce the model and its well-known exact solutions 
for d = 0. As for the case d = 1, there is no sharp phase transition for this 
case. 2 Section 3 is devoted to a discussion of the 1/n expansion for d = 0. 
We find it convenient to derive a first-order (nonlinear) differential equation 
satisfied by the entropy. The form of this equation renders the expansion in 
powers of 1In straightforward, the case n = az reducing to the usual Hartree 
limit. Section 4 deals with the self-consistent screening approximation. 
Instead of expanding in powers of l/n, an iteration of the differential equation 
derived previously, using the Hartree result as starting point, produces results 
which converge more rapidly. In Section 5 we consider the problem from the 
graph-theoretic viewpoint. Use of the familiar Ward identity relating the 
derivative of the self-energy to the three-point vertex enables us to sum all 
graphs for the propagator of the order parameter field. The result is a re- 

2 This is no longer true for n < 0 (d = 0) and n < 1 (d = 1). (8~ 
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covery of the differential equation derived in Section 3. Graphs for the first- 
and second-order screening corrections to the entropy are written down and 
used to recover the results of Section 3. A discussion of the graphs for the 
free energy is contained in Section 6. The advantage of the graph-theoretic 
approach is that it is amenable in principle to an extension to higher dimen- 
sionalities, but we do not attempt this here. Section 7 concludes with a brief 
summary. 

2. THE M O D E L  A N D  ITS S O L U T I O N S  

The Ginzburg-Landau model in d dimensions is defined by the following 
partition function: 

Z = f I~  [dr exp{- F[r 
i=:1_ 

(1) 

where the free energy functional F is given by the canonical form 

i=1 i 
(2) 

and r i = 1,..., n, is an n-component order parameter field. The presence 
of the explicit l/n in the coefficient of the fourth-order term of Eq. (2) ensures 
that the width of the critical region is independent of n in the Hartree limit 
(n --> oe) and thereby makes possible the expansion in powers of 1/n. 

In the special case d = 0 there are no spatial fluctuations of the order 
parameter and the partition function reduces to an integral over the magni- 
tude of the r 

Z =  f_~ ] ~  dr e x p l - � 8 9  ~ r  (1/4n)(~ r (3) 

Equation (3), with n = 2, has been used as a model for the thermodynamics 
of small, superconducting grains (9) of diameter less than 1000 A (but not so 
small that the discrete nature of the electronic energy spectrum becomes 
important.) It may be simplified by the substitution ~ r = r to yield 

~0 e~ Z = C, r "-1 de exp[-�89162 2 - (1/4n)r ~1 (4) 

where C. = 2~r"/2/F(n/2) is the area of the unit hypersphere in n dimensions. 
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A change of integration variable to S = (2n)- ~/2q~2 yields 

Z = 1C~(2n)'~l~:dSS'~/2-~exp[ -[n'zl2t~ ) " rS -~S  2] 

2 n 4 m ,  z n - 1 = (2~ n) / (exp.-~-) U ( ~ ,  In'I/2'  ~) ,), . > o (5)  

= (2~" n) t e x p - - f f - - ) i ~  V ( - ~ , - ~ ]  r~ 

I} ,  ~" < 0 (6) 

where U(a, x) and V(a, x) are the parabolic cylinder functions. (1~ 
For the purposes of the 1/n expansion it will be convenient to define an 

entropy function by 0 = - (2/n) d(ln Z)/dr (0 is minus twice the entropy per 
component of the order parameter). 0 may be calculated either by differen- 
tiating Eq. (6) directly and using the recursions relations (1~ for U and V, or 
by differentiating inside the integral of Eq. (4). The latter technique gives 

0 = 1 fo  ,fin+l dq~ exp[-�89 2 - (1/4n)q~ ~] 
(7) 

/1 ~ - 1  ~0 '/'" d,/, exp[-�89 ~ - (1/4n)4, ~] 

[2] 1'2 ~o S"'~ dS exp[- ~'(~n)l'~S - �89 S~] 

fo S~12-1 dS exp [ -  "r(�89 - �89 2] 

/'n] 1'~ v(-~(n + 1), ~(~n)l'~) 
= \-2] U(�89 - 1), "r(�89 ' ~" > 0 

= r(�89 + 1) v t - - - Y - ' - " I g ]  } 

- s in [ (n  + 1)2] U ( ~ ' - [ ' -  ~'~][n~Z/s~'~]f 

• v ' - ~ t ~ J  J ;  ' " < ~  (8) 

For n = 2 the result takes a particularly simple form. Returning to 
Eq. (4) and setting n = 2 yields 

fo Z(n = 2) --- C2 4, d4, exp(-�89 2 - �89 
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A change of  integrat ion variable to t = q~2/2~/2 gives 

j0 Z(n = 2) = ~/2C2 dt e x p ( -  ~/5~-t - t 2) 

/2)] ~ o~ P ( ) = ~/2C2[exp(,  2 dt ex - t 2 
/-/7 

= (~r/2)1/2C 2 exp0-2/2) erfc(7/~/2) (9) 

The ent ropy function becomes 

O(n = 2) = - ,  + (2/~) 1r exp( -~2/2) /e r fc0- /~ /2)  (10) 

Equat ions (9) and (10) are the wel l -known results for  the d = 0 super- 
conductor .  Plots of  0 versus ~- for  n = 2 and n = 1 are given in Figs. 1 and 3. 

3. T H E  1In E X P A N S I O N  F O R  d = 0 

The 1/n expansion was originally conceived (1,2~ as a Feynman  graph 
expansion in which the order  (in 1/n) of  a graph  is equal to the difference 
between the number  of  interact ion vertices and the number  of  closed loops. 
This is the fo rm of  the expansion which has been used (l'a) to calculate leading 
corrections to the Har t ree  results in d = 3 and d = 2. Since, however,  the 
number  of  graphs  rapidly increases with the order  in 1/n, nongraphical  
techniques, where they exist, are in many  ways preferable.  Such a technique, 
based on solving the equivalent  quan tum mechanical  anha rmonic  oscillator 
problem,  ~ has been used by Ferrell and Scalapino (4> to calculate the first 
two screening corrections for  d = 1. 

The simplest way of  dealing with the 1/n expansion for  d = 0 is by 
means  of  a differential equat ion for  the en t ropy function 0. Recall the 
definition of  0: 

2 d l n Z  2 1 dZ 
0 - -  

n d~- nZd-r 

Hence 

ao 21 2(1 
& - n Z  d~ ~ + n_2  & ]  

2 1 d2Z n 02 
= - n Z  d.r ---~ + 

The first term on the r ight-hand side is evaluated by differentiating inside the 
integral o f  Eq. (4) to give 

1 d2Z 1 fo On+a d4 e x p [ - l r 4 2  - (1/4n)4']  

Z dT 2 4 f o  $n-1 d4~ exp[-�89 2 - (1/4n)6']  



34 Alan J, Bray 

Integrati6n of the numerator  by parts yields, recalling that 0 satisfies Eq. (7), 

1 d2Z n 2 
Z d r  2 = 4-(1 - TO) 

giving 

dO n 02 n (1 - ~-0) 

o r  

2 dO 
02 + TO = 1 + nd'-~ (11) 

Equation (11) is a nonlinear first-order differential equation for 0. Being 
of the Ricatti type, it may be transformed to a linear second-order differential 
equation for Z, where 0 = - (2 /n) (1 /Z)  dZ/dr,  which not unnaturally turns 
out to be the generating equation for the parabolic cylinder functions U and 
V. In its present form, however, Eq. (11) is eminently suited to an expansion 
in powers of 1/n. Setting n = oe removes the first derivative term to give the 
usual Hartree limit: 

002 + r0 o = 1 (12) 

o r  

0 o = [(r 2 + 4) 1/2 - r]/2 (13) 

This result is independent of n. It  is compared to the exact results for n = 2 
and n = 1 in Figs. 1 and 3. Not  unexpectedly, the Hartree result is a rather 
poor  approximation for these small values of n. Before continuing with the 
1/n expansion, we state the boundary condition needed to specify a unique 
solution of Eq. (11). This is clearly 0---~ 1/~- as T---~ +oo since this result 
follows directly from Eq. (7), the q~4 terms being negligible in the limit of 
large, positive T. The Hartree result already satisfies this boundary condition 
and it is clear from Eq. (11) that all corrections to the Hartree result will 
vanish more quickly than 1/T as ~ - +  +oo. Hence when we make the l /n  
expansion the boundary condition is satisfied ab initio. 

We now proceed with the 1/n expansion. We will find it convenient to 
set A = 2/n and look for the expansion in powers of ,~. Setting 

0(~) = ~ 0r(T)A r 
r = O  

in Eq. (11) yields 

2 2 OrOsAr+S + "r 0~A ~ =  1 + (dOr/d'r)A r+l 
V,8=O r = 0  r = 0  
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Equat ing coefficients o f  3o gives the Hartree result, Eq. (12). Equat ing 
coefficients o f  A r for  r f> 1 yields 

~ OsOr_s + tO, = dO,_l/d'r 
s = o  

Terms involving 0r may be extracted f rom the sum to give 

r--1 

OsOr_s + (200 + r)eT = dOT_l/dr 
s=1  

o r  

--0o ( 0o2 dOr-1 r-1 ) 
0T 1 T ~ o  2 1 -I- 002 dOo -I- ~ OsOr_ ~ (14) 

S=I  

where we have used Eq. (12) to eliminate r in favor o f  0o. Equat ion  (14) yields 
the following expressions for 0~ for r = 1-5:  

01 = -0o3/(1 + 0o2) 2 
o~ = 0o~(3 - 20o2)/(1 + 002) 5 
03 = -5007(3 - 7002 + 20o4)/(1 + 002) 8 
04 = 0oO(105 _ 4890o2 + 437004 _ 74006)/( 1 + 0o2)11 (15) 

05 = - 0o11(945 _ 70440o 2 + 12,3080o 4 - 6117006 + 706008) 
x (1 + 0o2) -1~ 

Successive screening approximations are generated by the formula  

~c 

O(n = 2/A) = ~ 0TA', k = 0, 1, 2 .... (16) 
T=0 

We shall refer to Eq. (16) as the "k th  screening approximat ion ."  We consider 
first the case n = 2 (A = 1). Exact, Hartree,  and first screening solutions are 
shown in Fig. 1. Higher  screening approximations are so accurate that we 
depict them in terms of  their differences from the exact result. These differ- 
ences, 0 - ~ = o  0~ A~, are plotted versus 7/~/2 for k = 1-5 in Fig. 2. Note  
that the accuracy of  the approximat ion improves through k = 3 or 4 and 
then seems to start deteriorating for k = 5. This may be symptomat ic  of  the 
asymptot ic  nature of  the 1/n expansion. That  the 1/n expansion cannot  be 
convergent  is easily demonstra ted by considering the point  r = 0. For  this 
special case the integrals in Eq. (7) are readily evaluated to yield 

O(n, ~- = O) = (2/~/n)F(n/4 + �89 

This function has poles at n = - 2 ,  - 6 ,  - 1 0  ..... so that considered as a 
function of  1/n, it can have no finite radius of  convergence. In fact the usual 
expansion of  the gamma  functions for large n shows that the expansion in 
powers o f  1In is asymptotic.  However  the accuracy of  the kth screening 
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0 
n = 2  

�9 2.0 

"\ 
\ 

\ 
\ 

I I I \ 
-3.0 -2.0 -I.0 0 

I I 
1.0 2.0 

Fig. 1. En t ropy  funct ion 0 versus r for  n = 2. The exact, Hartree,  and first screening 
solut ions are labeled E, H, and 1, respectively. The dashed line through the origin 
represents  mean field theory.  

n=2 ~ 0 . ~ 5 ~  

Fig. 2. Exact en t ropy  funct ion 0 minus  its value in the kth screening approximat ion ,  
~r~=o 0rA', p lot ted versus ~'/a/2 for n = 2 (A = 1). The first th rough  the fifth screening 
approx imat ions  are labeled 1-5, respectively. 
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n = l  

\ 3~ 

i 
I I N r I 

- 2 . 0  - I . 0  0 LO 2 .0  

T/,/5 
Fig. 3. Entropy function 0 versus r/~/2 for n = 1. Exact Hactree and first through fourth 
screening solutions are labeled E, H, and 1-4, respectively. The dashed line through the 
origin represents mean field theory. 

approximat ion for small k suggests that  at tempts to extend the approximat ion 
beyond k = 2 in one dimension and beyond k = 1 in two and three dimen- 
sions would be well worthwhile. This is one o f  the principal conclusions of  
this paper. 

We turn now to the case n = 1 (A = 2). Here the screening approxima-  
tion deteriorates much more  rapidly as k increases. The results are plotted 
directly versus -r/~/2 in Fig. 3 for k = 1-4. Also plotted are the exact and 
Hartree solutions. Already for k = 2 the screening solution has a plateau 
region a round  ~- = 0, corresponding to a specific heat very near zero (the 
specific heat per componen t  of  the order parameter  is C = - � 8 9  dO/dr). 
For  k >1 3 wild oscillations set in. The result for k = 5 is not  shown since 
the oscillations take the entropy function below zero. These results are 
further evidence of  the asymptot ic  nature o f  the expansion. 

4. THE S E L F - C O N S I S T E N T  S C R E E N I N G  A P P R O X I M A T I O N  

In  the previous section we obtained approximate  solutions to Eq. (11) 
by performing an expansion in powers o f  ,~ = 2/n, thus obtaining systematic 
corrections to the Hartree approximation.  Inspection o f  the form of  Eq. (11), 
however, suggests an approximat ion scheme which should give more accurate 
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results more quickly, namely an iteration of the first derivative term using the 
Hartree approximation as s tar t ing point. Recall the equation to be solved: 

02 + rO = 1 + 1(dO/dr) (17) 

The Hartree approximation sets I = 0, yielding 

02 + r 0 =  1 or r = ( 1 / 0 ) -  0 
so that 

dO/d~- = - 02/(1 + 02) (18) 

The "first self-consistent screening approximat ion"  is obtained by using 
Eq. (18) in Eq. (17) to give 

02 + rO -- 1 - [A02/(1 + 02)] 

o r  

alO 2 + TO = 1 (19) 
where 

-1 = 1 + [A/(1 + 02)1 (20) 

Equations (19) and (20) are amenable to simple numerical solution. 
Note that we have written dO/dr as a function of 0 in Eq. (18) rather than as a 
function of r. This increases the "self-consistency" of the approximation 
(we shall find in Section 5 that it corresponds in the graph-theoretic scheme 
to using fully dressed propagators everywhere). Further iterations are 
straightforward: Eqs. (19) and (20) are used to determine dO/dr as a function 
of 0; this function is then inserted into Eq. (17) to yield the next approxima- 
tion for 0. We refer to such subsequent approximations as the "second self- 
consistent screening approximation," and so on. 

At this point we should remind the reader that Eq. (17) is of course 
exactly soluble in terms of the parabolic cylinder functions. The point of the 
present paper is to test the accuracy of well-defined approximation schemes 
which have been applied to the Ginzburg-Landau problem in higher dimen- 
sionalities. In Section 5 we shall find that the "self-consistent screening 
approximat ion"  discussed here is identical in first iteration to the scheme 
used by Bray and Rickayzen (6'7~ for calculating the specific heat in d = 1 and 
d = 2 .  

The kth self-consistent screening approximation produces an equation 
for 0 of the form 

~k02 + Or = 1 (21) 

giving 

d"~ 20a~ + 02 + r + 0 = 0 
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o r  

dO - 0 2 

= 1 + 02[% + O(dak/dO)] (22) 

A fur ther  i terat ion therefore yields a recursion relation for  the a~: 

A 
~ + 1  = 1 + 1 + 02[a~ + O(d%/dO)l  (23) 

which, with the initial condi t ion % = 1 appropr ia te  to the Har t ree  approxi-  
mat ion,  generates all the self-consistent screening approximat ions .  The  first 
three ak are given by 

A 
a l =  I + 1 +0----- 5 

A(1 + 02) 2 
a 2 = l +  1 + (3 + A)O 2 + ( 3 -  A)O 4 + 06 

aa = 1 + A[1 + (3 + A)O 2 + ( 3 -  A)O 4 + 06] 2 
• {(1 + 02)[1 + 3(2 + A)O 2 + 3(5 + 2t)0  ~ + 4(5 + A2)06 

+ 3(5 - 2A)O 8 + 3(2 - A)O ~~ + 012]} -~ (24) 

n =2 88 t 
0.02 

2 I 

,I -1 
- z  ~ - / J 2  , 2.o 

-0.02 

Fig. 4. Exact entropy function O minus its value in the kth self-consistent screening 
approximation,  0 (k~, versus ~-/~/2 for n = 2. First through third self-consistent screening 
approximations are labeled 1-3, respectively. Note the change of vertical scale compared 
to Fig. 2. 
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For n = 2 (A = 1) even the k = 1 result, 0 (1~, is very close to the exact 
result 0. The results are plotted as 0 -  0 (k~ (k = 1, 2, 3) versus .~/~/2 in 
Fig. 4. The accuracy of these results is clearly substantially better than for the 
simple screening approximations of  equivalent order discussed in Section 3. 
(Note the change of vertical scale compared to Fig. 2.) Furthermore, whereas 
the 1/n expansion ultimately diverges, it may be hoped that the self-consistent 
screening approximation will ultimately converge to the exact solution 
(though it is of course by no means certain to). On the debit side, the self- 
consistent screening approximation is more difficult to extend to higher 
dimensionalities than the 1/n expansion, particularly when results beyond the 
first iteration are desired (this will become clear in the following section). For 
n --- 1 the iteration does not converge so rapidly. Results for k = 1, 2, 3 are 
plotted as 0 (~ versus r /v /2  in Fig. 5. 

5. GRAPH-THEORETIC CONSIDERATIONS 

The theory of the Ginzburg-Landau model in terms of Feynman graphs 
is well known. ~-6~ We are concerned in this section with a detailed application 

0 

n=l  
3.0 

\ 
\ \  

2 0  

 d~ 
- 2 .0  - 1.0 0 1.0 2 . 0  

Fig. 5. Entropy function 0 versus ~-/~/2 for n = 1. Exact and first through third self- 
consistent screening solutions are labeled E and 1-3, respectively. The dashed line 
through the origin represents mean field theory. 
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of  graph  theory to the case d = 0. We begin by recalling Eq. (3) for  the 
part i t ion funct ion:  

Z = dr - ~  r r  _ Tn r  (25) 
--co i=i i=i 

This is the s tandard fo rm of  a 4, 4 field theory with the simplification for  d = 0 
that  the " f i e lds"  r have no spatial  variation.  We introduce the order  pa ram-  
eter correlat ion funct ion or " p r o p a g a t o r "  for  the field Cj 

(r = 2 l ~  (dr162 2 exp -~r ~ r ~nn r (26) 
- - ~  i = 1  i 

and note that  is it s imply equal to the en t ropy function 0 [ = - (2/n) d(in Z)/dr] 
since (r  is independent  of  7". For  r >> 1 we can neglect the coupling between 
fields which is represented by the four th-order  terms in the exponents,  to 
obtain the " b a r e "  p ropaga to r :  

0 o = (r = 1/~- (27) 

The  " d r e s s e d "  p ropaga to r  0 is given by the usual graphical  expansion <s,6> as 
the sum of  all topological ly  distinct, l inked graphs  with two external lines. 
The graphs  are evaluated according to the following rules: 

1. Each bare p ropaga to r  is represented by a solid line and associated 
with a factor  1/~-. 

2. Each interaction vertex is represented by a dashed line with two solid 
lines joined to each end and  is associated with a factor  - 1/n. 

3. Each closed loop is associated with a factor  n (arising f rom a sum 
over componen t s  of  the order  parameter) .  

4. There is an overall  factor  2 z m, where l is the number  of  interaction 
vertices and m the number  of  closed loops. 

Consider  a graph containing l interaction vertices and m closed loops. 
Then it must  contain 2l + 1 bare p ropaga tors  and its value is given by the 
rules as 

(1/~-)~z+l(-1/n)~nm2 z-m = [(--1)l/~-2z+l]Z ~-m, where /~ = 2/n (28) 

Hence an expansion in powers  of  A is derived by considering graphs  wifh 
l - m = 0, 1, 2 ..... In zeroth order  we require all graphs with equal numbers  
of  interact ion vertices and closed loops. This is the Har t ree  approx imat ion  
and is shown in Fig. 6. A double bold line represents the dressed p ropaga tb r  
00. Its use on the r ight-hand side in Fig. 6 enables us to sum the required 
infinite series of  " b u b b l e  trees." Appl icat ion of  the rules gives 

0o = (1/~-) - (0o2/~ -) 

or 0o 2 + too = 1, in agreement  with Eq. (12). 
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�9 
i 

Fig. 6. Graphs for the entropy function 0 within 
the Hartree approximation. Double solid lines 
represent dressed Hartree propagators and single 
solid lines represent bare propagators. 

Terms of first order in A are given by graphs with one more interaction 
vertex than closed loop. All such graphs are generated by those of Fig. 7(a), 
where a wavy line represents the "screened potential ''(6) and is defined by 
the graphical equation of Fig. 7(b). In Fig. 7 a single bold line now represents 
the Hartree propagator  00. The screened potential is given by ( - 1 / n ) v ,  

where application of the rules to Fig. 7(b) gives 

v = 1/(1 + 0o ~) 

As in Section 3, we seek an expansion of the form 

(29) 

0 = 2 ,  ~ aT (30) 
r = 0  

The graphs of Fig. 7(a) give 

. . . .  0 2~ (31) 01 V20o 5 vOo a 003/(1 + o , 

in agreement with Eq. (15). 
With increasing order in ~ the number of graphs for 0 increases extremely 

quickly. In second order, for example, there are 32. We give these in Fig. 8. 
The graphs are grouped in pairs labeled with unprimed and primed letters. 
In each case the primed graph is obtained from the unprimed graph by 
joining the external lines of the latter to form a closed loop which is connected 
by a wavy line to a new pair of  external lines. (Note that the two diagrams of 
Fig. 7a are related in the same way; in fact, it is clear that graphs occur in 
such pairs to all orders in L) The value of a primed graph is related to that 
of its unprimed counterpart  by a factor - vOo 2, so that the two graphs together 
have a value 1 - vOo 2 = v times the value of the unprimed graph. Hence- 
forward, therefore, we will count only unprimed graphs and multiply by a 

(o) + 

(b) + ~--- 

Fig. 7. (a) Order A corrections to the Hartree 
entropy. Solid lines represent Hartree propaga- 
tors 0o and wavy lines the screened potential 
( - 1/n)v. (b) Graphical equation for the screened 
potential. 
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(d) (d') ) (e') (f) (f ') 

(g) (g') (h) (h') (i) ( i ' )  

( j )  ( j ' )  (k) (k') 

(m) (m') (n) (n') 

(p) (p') 

(1') 

(o) (o') 

Fig. 8. Order ,~2 corrections to the Hartree entropy. Solid lines represent 
Hartree propagators 00 and wavy lines the screened potential (-1/n)v. 

factor  v to include the primed graphs. The unpr imed graphs can be further 
grouped according to the number  o f  wavy lines appearing. A graph (of order 
A 2) with l wavy lines has 2l + 1 solid lines and l - 2 closed loops and there- 
fore a value ( -  v)ZO 2~+ 1A2. Inspection o f  the unprimed graphs o f  Fig. 8 shows 
that  there are three with I = 2, eight with l = 3, and five with l = 4. The total 
contr ibut ion to 0 o f  all the graphs o f  Fig. 8 is therefore 

vA2(3V20o 5 - 8V30o 7 + 5v~00 ~ 

giving 

02 = V30o5(3 - 8vOo 2 + 5V20o 4) = 005(3 - 20o2)/(1 + 0o2) s (32) 
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in agreement with Eq. (15). The agreement is a check that we have indeed 
included all second-order graphs in Fig. 8. These same graphs give the order 
•2 contribution to 0 for d = 1, 2, and 3, although, because of the spatial 
variation which enters, their evaluation is much more difficult than for d = 0. 
Our conclusions concerning primed and unprimed graphs still hold. The sum 
of such a pair is equal to v(0) times the value of the unprimed graph, where 
(-1/n)v(O) is the screened potential at zero momentum transfer. Further 
grouping of graphs is not helpful, however, since the value of a graph depends 
on its topological structure, in contrast to the case d = 0, when only the 
number of wavy lines is important. 

The 1In expansion can be performed more elegantly by considering the 
free energy function F = - l n  Z rather than the entropy function 0. This 
results in a considerable reduction in the number of graphs involved at the 
cost of a slight complexity in the counting of graphs. The details are given in 
Section 6. 

We may consider the exact evaluation of 0 by graphical means. This is 
of interest both as a rare example of the exact solution of a q~4 field problem 
by a graphical method and for the insight it gives into the nature of the self- 
consistent screening approximation. Now it is well known that the dressed 
propagator 0 can be expressed in terms of a self-energy function cr according 
to the graphs of Fig. 9(a) with e given exactly by the graphs of Fig. 9(b). 
Here a single bold line represents once more a bare propagator l /r ,  while a 
double bold line is the dressed propagator 0. The shaded circle 7' is the fully 
renormalized three-point vertex and is given by an infinite graphical expan- 
sion, the first few terms of which are shown in Fig. 9(c). Figures 9(a) and 9(b) 
yield, respectively, 

0 = 1/(~ + ~) (33) 

and 

= 0(1 + ,~y) (34) 

Now consider the expansion of e in terms of bare propagators. Differentiation 
with respect to ~- has the effect of opening bare propagator lines in all possible 
ways so as to generate ~, via the relation 

a~/d-~ = 7 - 1 ( 3 5 )  

Equation (35) is the usual Ward identity relating the self-energy to the three- 
point vertex. 

In one or more dimensions Eqs. (33)-(35) do not form a closed set, due 
to the momentum dependences which enter the problem. The vertex function 
depends on two momentum variables, 7, = ~,(k, q), one of which (say q) is 
the momentum transferred at the vertex. The Ward identity, Eq. (35), only 
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Fig. 9. (a) Relation between the dressed 
propagator  0 and the self-energy ~. (b) 
Graphs  giving the self-energy e. (c) Graphical  
expansion for the three-point vertex 7. In all 
graphs double solid lines represent fully 
dressed propagators.  

involves ),(k, 0) since the operation of differentiating with respect to r simply 
opens bare propagator lines without transferring any momentum. For d = 0, 
however, all momentum variables are zero (since the field q~ has no spatial 
dependence) and simply drop out of the problem. Equations (33)-(35) then 
form a closed set. Equation (33) can be written 

a = 1 / 0 -  ~- (36) 
so that Eq. (35) becomes 

&r 1 dO 
;~ = 1 + d--~ = 02 dz (37) 

Substituting into Eq. (34) then yields 

11o - ~ = e[1 - ( ~ l e  ~) a e l a d  

o r  

02 + OT = 1 + A dO~dr (38) 

This agrees with our exact result, Eq. (11). 
We now turn to the self-consistent screening approximation in a graphical 

context. We see that this approximation consists simply in iterating Eq. (34) 
starting from ), = 0. Subsequent values of 7' are generated from Eq. (35) or, 
equivalently, Eq. (37). In fact we can substitute Eq. (37) into Eq. (38) to give 

0 2 + Or = 1 - Au 2 
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o r  

(1 + hT)O 2 + 0z = 1 (39) 

Comparison of Eqs. (39) and (21) yields a simple relation between the 
kth iterated value of 7, 7k, and the parameter c~k introduced in Section 4: 

c~k = 1 + hT~ (40) 

In order to obtain this equivalence, we require that 7k be written as a function 
of 0 at each stage of the iteration rather than as a function of ~. Graphically 
this clearly corresponds to using fully dressed propagators at each stage of 
the iteration. The graphical representation of the iteration procedure is 
shown in Fig. 10. In this form, of course, formal extension of the self- 
consistent screening approximation to higher dimensionalities is straight- 
forward, though the equations represented by the graphs become extremely 
difficult to solve. Figure 10(c) gives the self-energy for the first self-consistent 
screening approximation which was used by Bray and Rickayzen r to 
calculate the specific heat for d = 1 and d = 2. 

As a check that this graphical iteration is indeed identical to that of 
Section 4, we evaluate 72 from Fig. 10(d): 

72 = 1 - 0272 - AO2v72 + 2~04v272 

~02 2a04 ] -1  
= 1 + O ~ + 1 + 0 ~ 2  (1 T~z)2]  

(1 + 02) 2 
= 1 + (3 + A)0 ~ + ( 3 -  A)0' + 06 (41) 

in agreement with Eq. (24) via Eq. (40). 
The graphical iteration procedure discussed here constitutes a method 

for extending beyond first order the self-consistent screening approximation 
of Bray and Rickayzen for arbitrary dimensionalities. We have seen in Section 
4 that such a procedure may be expected to give more accurate results than a 
simple expansion in powers of 1/n. However, for d > 0 the approximation 
takes the form of a set of nonlinear coupled integral equations which can 
only be solved by resorting to further approximationsJ 6,v~ For  d = 2, for 
example, the first-order set was solved by neglecting the momentum depen- 
dence of the self-energy. C7) Statements about the relative accuracy of the 1/n 
expansion and the thus approximated self-consistent screening method are 
difficult to make. In one dimension, however, for which exact results are 
known, (4'11~ a simple approximation (6~ of the set of equations for first-order 
self-consistent screening [based on expanding the self-energy e(q) as ~r(q) ~ 
a + bq 2] yields results significantly better than those of the 1/n expansion in 
first or even second order. 3 We conclude that both the techniques discussed 
here merit further consideration for d >t 1. 

3 C o m p a r e  the  resul ts  o f  Refs .  4 a n d  6. 
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(b) > Yj = 

�9 
I �9 

+ + + I + 

(c) --> ~ = ~ + 

(d) ~ T2 = I +  + ~ +  + 

etc. 

Fig. 10. Iteration procedure for the self-consistent screening 
approximation. At each stage of the iteration double solid lines 
represent dressed propagators to be determined self-consis- 
tently within the approximation at that stage. 

6. G R A P H S  FOR THE FREE ENERGY 

In considering the l/n expansion in Section 5 we noted that the number 
of graphs for the entropy function 0 increases rapidly with increasing order 
in 1/n, so that, for example, there are 32 graphs in order 1/n 2. A considerable 
reduction in numbers can be obtained by constructing graphs for the free 
energy function F defined by 

F = - In Z (42) 

so that 

0 = ___2 d F  = ,~ _dF (43) 
n d'r dr  

The graphs for F are the usual topologically distinct, linked graphs with no 
external lines. They are evaluated according to rules 1-4 of Section 5 together 
with two extra rules: 

5. There is an overall factor ( - 1 )  corresponding to the minus sign in 
Eq. (42). 

6. A graph with rotational symmetry R is associated with an additional 
factor 1/R. 

The origin of rule 6 can be seen by considering Eq. (43). This shows that 
graphs for 0 are derived from those for F by opening bare propagator lines 
in all possible ways. An F graph with rotational symmetry R hence leads to R 
identical 0 graphs. Rule 6 may therefore be written more generally as, 
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"divide by the number of identical 0 graphs produced on differentiation with 
respect to T." 

To demonstrate the equivalence of the two expansions, we consider order 
A contributions to F [leading via Eq. (43) to order A ~ contributions to 0]. 
These are graphs with one more wavy line than closed loop and are shown in 
Fig. 11. We make the derivation of rule 6 explicit by considering the corre- 
spondence of these graphs to those of Fig. 8 by means of Eq. (43). Recall that 
in both sets of graphs a single bold line represents a Hartree propagator 0 o 
and therefore contains all possible self-energy insertions of the Hartree type. 
Opening bare propagator lines in all possible ways, we find 

ll(a) ~ 8(d), (d'), (f), (f'), (g), (g'), (h), (h') (each in two ways) 
11 (b) --+ 8(i), (i'), (1), (1') (each in four ways) 
ll(c)--+ 8(a), (a'), (b), (b'), (c), (c'), (e), (e'), (o), (o'), (p), (p') 

(each in two ways) 
1 l(d) --~ 8(m), (m'), (n), (n'), (j), (j'), (k), (k') (each in three ways) 

Hence graphs 1 l(a), (b), (c), and (d) must be associated with factors �89 �88 �89 
and �89 respectively, in agreement with rule 6, since the rotational symmetry 
factors are 2, 4, 2, and 3, respectively. 

The evaluation of the graphs for d = 0 is simple. Application of the 
rules gives 

F(a) = - �89 20o 5, F(b) = - 1AV20o 4 
F(c) = �89 8, F(d) = �89 a 

The order t 2 contribution to 0 becomes, through Eq. (43), 

d (  3 5 3~6] 02 = + } 

002 d I 3 2 ~ 5 ) 
- l+0o2 ol- v0o +  30oO 

/ 

002(3 - 2002) 
(1 + 002) 5 

in agreement with Eq. (15). 
As far as extensions to higher dimensionalities are concerned, it is clear 

(a) (b) (c) (d) 

Fig. 11. Order  ~ correct ions  to the Har t ree  
free energy. Solid lines represent  Har t ree  
p ropaga tors  0o and  wavy lines the screened 
potent ial  ( - 1/n)v. 
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that the free energy expansion is more convenient than the entropy expansion 
in view of the reduced numbers of  graphs involved. Abe (12) has recently used 
the graphs of Fig. 11 to calculate order 1/n 2 corrections to the critical expo- 
nent ~ in three dimensions. The author has evaluated the same graphs for 
d = 1 and recovered the results of  Ferrell and Scalapino, (4~ obtained by a 
nongraphical method. Details will appear elsewhere. ~13~ The remaining and 
most difficult case, d = 2, is presently being studied. 

In third- and higher-order screening approximations the number of  
graphs, even for the free energy, becomes large. We wish to emphasize the 
value of the case d = 0 for checking that all such graphs have been included. 
As an example, consider the graphs for third-order screening. Integration 
with respect to r of  the expression for 03 given by Eq. (15) yields an expression 
for the free energy in third-order screening: 

F 3 = ~ v a 0 0 6  - -  10v~008 + (25/2)v50~o~ - 5060012 (44) 

Four classes of  graph contribute to Fa: those with three wavy lines and one 
closed loop, those with four wavy lines and two closed loops, those with five 
wavy lines and three closed loops, and those with six wavy lines and four 
closed loops. Equation (44) tells us that the reciprocals of the rotational 
symmetry factors R for graphs in the first class sum to ~, for graphs in the 
second class to ten, in the third class to 25/2, and in the fourth class to five. 
Hence a study of the case d = 0 enables us to check graphs class by class. 
The graphs may then be evaluated in full confidence to obtain results in 
higher dimensionalities. 

7. S U M M A R Y  

We have used the exactly soluble zero-dimensional Ginzburg-Landau 
model to test the accuracy of two field-theoretic approximation schemes of 
current interest. These are the "screening approximat ion"  of Ferrell and 
Scalapino, based on the 1In expansion, and the "self-consistent screening 
approximat ion"  of Bray and Rickayzen, based on an iteration of the coupled 
equations for the self-energy and the three-point vertex function. We have 
carried the former to fifth order and the latter to third order. For  n = 2 the 
1In expansion seems to start diverging at the fifth-order term, whereas for 
n = 1 divergence sets in as early as the second-order term. The self-consistent 
screening approximation is more accurate for both n = 2 and n = 1 but is 
more difficult to extend to higher dimensionalities. 

In conclusion we feel that efforts to extend the 1In expansion beyond the 
present limits of  second order for d = 1 and first order for d = 2 and d -- 3 
would be well worthwhile. Extension of the self-consistent screening approxi- 
mation, though certainly more difficult, would perhaps prove even more 
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rewarding in terms of numerical  accuracy. Where graphical methods are 

used the case d --- 0 provides a simple method for checking that  all relevant 

graphs have been included. 
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